14p^2-23=4p^2+10p

Simple and best practice solution for 14p^2-23=4p^2+10p equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 14p^2-23=4p^2+10p equation:



14p^2-23=4p^2+10p
We move all terms to the left:
14p^2-23-(4p^2+10p)=0
We get rid of parentheses
14p^2-4p^2-10p-23=0
We add all the numbers together, and all the variables
10p^2-10p-23=0
a = 10; b = -10; c = -23;
Δ = b2-4ac
Δ = -102-4·10·(-23)
Δ = 1020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1020}=\sqrt{4*255}=\sqrt{4}*\sqrt{255}=2\sqrt{255}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{255}}{2*10}=\frac{10-2\sqrt{255}}{20} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{255}}{2*10}=\frac{10+2\sqrt{255}}{20} $

See similar equations:

| 5^4-3x=125 | | x^2+58x+210=0 | | Z2+3z+10=0 | | x^2-16x^2-8x-1+5x=-1025 | | 7x-2(5+4x)=20+3(-2-3x) | | x^2-16x-8x-1+5x=-1025 | | x^-8x-20=0 | | 3x^2-72=2x-x^2 | | 2(3x+3)=3(x+9) | | 11r^2-6r-24=5r^2+11-5r | | -6x=14.4 | | 2(x−3)−3(x−2)=x+2−(x−5) | | x^2-73=-10-2x | | 24(18+x)-24(18-x)=1 | | 6x^2=-7x+24 | | 100-102=x | | 10x+(5x-3)=27 | | 1/2x+8=4x+1 | | 4/13=m/16 | | 0.50x+0.20(9.0-x)=3.30 | | 4x^2+4x=49 | | 5x^2-2x-1=x | | 15x^2-x-3=0 | | (x^2/2)-(1/3)=0 | | x^2/2-1/3=0 | | x+(x-3)+(x+4)=11 | | 4(x-3)+4=-2(x-5) | | 5^x+1=625 | | 3(2a-4)=3(4a-2) | | 7u-2u^2-6=0 | | 4x-1/3x+2=0 | | 9x+9=88 |

Equations solver categories